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CONTrNUAL FRACTURE OF NON-LINEARLY ELASTIC BODIES* 

V.I. KO~AUROV 

A model of a medium is considered for which the development of microdefects, 
namely, microcracks, pores andintergrainvacancies, are substantial. 
Microdefect diffusion and polar phenomena are neglected, The principles 
of the phenomenological description of the behaviour of such materials are 
found in damage theories /l, 2/. The relation between the strain history 
and the strength criterion of a material particle is revealed /3/. The 
energy aspects of the damage phenomenon were considered /4-7/ in the 
modefling of fracture waves by strong discontinuities separating materials 
with different rheological properties. A survey of the further development 
of the damage theory and its applications to viscoelasticity and creep 
problems is contained in /8/. 

The approach used in this paper differs from the traditional approach 
in two main ways. Firstly, by the axiom of local energy balance and the 
inequality of dissipation. Following the mechanics of an isolated crack 
/9/, a term describing the energy flux distributed over a volume that is 
related to transformation of part of the stored energy and the work of 
the stresses in the surface energy of the microcracks, is introduced into 
the local energy balance equation. The dissipation inequality differs 
from the Clausius-Duhem inequality /lo/ by a component that is the dis- 
sipation of fracture. The second essential difference is the modification 
of the principle of macroscopic determinability. It is considered that 
the running reaction of a material element is a functional determined by 
the independent prehistories of the strain, entropy, and damage. 

For a thennoelastic damaged body these fundamental assumptions enable 
one to clarify two important questions that remain unsolved in the 
traditional theory of damage: what is the macroscopic interpretation of 
the measure of material damage and among what group of equations is the 
equation giving the evolution of damage, the group of rheological relation- 
ships or the conservation laws? It is shown that for the medium under 
consideration, the second rank damage tensor can be Identified with the 
macroscopic strains of an element unloaded from the running state in a 
passive process. It is found that damage growth in thermoelastic media 
is not controlled by the kinetic equation but by a finite relationship 
connecting the running value of the damage with the running value of the 
strain, entropy, andthe distributed source of the damage. This relation- 
ship is a consequence of two thermodynamics principles, i.e., it be.lQngS 
to the transformed conservation laws. 

It is shown that within the framework of the assumptions taken for 
initially isotropic bodies, two and only two kinds of materials are 
possible whose damage is characterized by either a scalar or a symmetric 
second-rank tensor. Conditions are formulated which the governing 
relationships should satisfy so that the dissipation inequality and the 
invariance requirements would be satisfied in all the allowable processes. 
The conditions presented significantly narrow down the class of allowable 
equations of state, especially for a material with a scalar damage 
characteristic. 

Assuming small strains and that the rheology is independent of the 
temperature, the simplest example is constructed of a medium simulating 
a number of qualitative effects typical for mountain rock /ll/. 

1. Kinematics and laws of conservation. Let Xbe the radius-vector of a material 
particle of a body in the initial configuration x, x =x (X,t) is the radius-vector of the 
sameparticleat the time l>8 corresponding to a running configuration x. Let F denote the 
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gradient of the non-degenerate mapping X+x, such that dx =FW, detF #O. We will consider 
that in addition to the displacement vector u(X, t) -= x -X and the absolute temperature 
e(x,t)>o, a certain tensor a of the second rank is defined on x and is a measure of 
material damage. Unlike in /l-3/, it is assumed that the tensor z(t) is neither determined 
by the running value {F(t),B(t)} nor even by the whole prehistory {F (c),9 (x)},-m <z < t in 
the general case. 

Here the situation is analogous to the theory of moment (polar) media /12/ in which the 
rotation vectox and its gradient are considered in addition to the displacement vector and 
its gradient for the description of additional degrees of freedom of the macroparticles. In 
the general case rotation is not determined by displacement. 

The assumption of the possibility of a change in the damage tensor a~ independently of 
the strain and temperature histories indicates the qualitative distinction between x and 
the plastic or viscous strains tensor, which is a parameter reflecting the influence of the 
prehistory on the running state /13/. 

As an illustration we present the tensor 

used /14, 15/ as a measure of material damage. Here V is the volume of material containing 
weakly opened cracks, whose middle surface element dS is characterized by the normal n and 
the displacement vector II of the microcrack edges, and @ is the symbol of dyad multiplication. 
Obviously both the normal and the displacement vector are characteristics of the microstructure 
and can change under the action of factors of non-thennomechanical nature for a fixed macro- 
scopic strain and temperature. 

Let us now formulate the conservation laws for a medium being damaged. Let px, p be 
the mass density at ?c and x respectively, b the mass force vector, and T, the non-symmetric 
Piola-Kirchhoff stress tensor of the first kind. The laws of conservation of mass, momentum, 
and anuglar momentum and the compatibility of the velocities and strains are written exactly 
as in the case of a continuous medium in which there are no damage evolution processes 

p&/& IX - Div T, = pxb, T,FT = FT,cT 

~F~~~l~-Riv(v~I)=O, pdetF=p, 

(Div is the divergence in the variables X, and I is the unit tensor of second rank). 
The local energy balance equation is taken in the form /16, 17/ 

P&'=%:F'+QT+Q~ (1.2) 
QT=Div¶x+ pxrT$ @=Px('r---if 

Here T,:F is the work intensity of the stress in a momentless medium (the colondenotes 
convolution in the two indices), QT is the energy influx due to thermal conduction (!& is the 
heat flux vector in the variables X) and the action of the distributed heat sources FT. The 
energy influx Q, is due to distributed sources and sinks of a non-thermomechanical nature. 
The scalar quantity rj is the density of the distributed energy sources associated with the 
change in material damage because of external actiononthe microdefect geometry and quantity. 
It is an arbitrarily given external field, and in particular, can equal zero identically. 
Unlike i+j the quantity ei is non-zero in any damage change process and is the density of 
the distributed surface energy. The connection between the damage phenomenon and the change 
in the free surface of the microcrack edges is emphasised by the introduction of et'. 

It should be noted that the Griffith energy relationship in the mechanics of an isolated 
crack /9, 18,' rapidly follows from (1.2) if .rj and s,' (apart from a coefficient) are 6- 
functions whose supports agree with the moving vertex of the isolated crack. 

Taking (1.1) into account, (1.2) can be converted into a local energy conservation law 

P,~je+~v.v+e,)- Div(TzTv -t- r&)=pX(b.v -i- rT +?I 

Let'q be the entropy density, that is the conjugate reaction of the material to the 
introduction of the temperature (3 into the number of state parameters of a material particle. 
Let II denote the material reaction to the damage tensor n. Then the second principle of 
thermodynamics can be formulated in the form of a local inequality (V, is the gradient in 
the variable X) 

6Mt ST + 6f>o (1.3) 

8M~~~'-QT=8~'-((P;1Div q,+rT) 

6T = (pd)-'qxv,@ 

6j~n:D[‘-Qf=n:II’+q’-rf 
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Here 6~ is the internal (mechanical) dissipation that figures in the Planck inequality 
of classical thermomechanics /lo/, 6~ is the thermal dissipation associated with the thermal 
conduction of the medium and occurring in the Fourier inequality /lo/, while 6f is the 
dissipation of the continual fracture /16, 17/. 

It is seen from a comparison of the expressions for 6~ and 6, that n is the tensor 
analogue of the entropy density. The difference between the energy influxes QT and 0, is 
explained by neglecting the microdefect diffusion in the model under consideration. 

If the local energy balance Eq.(1,2) from which QT -I- Qf = &em-&:F’ follows, is used 
we arrive at a form of the dissipation inequality 

-se'+p;;'Tx:F'+Orl'+r:~+6,~0 (1.4) 

convenient for studying the constraints imposed by the second law of thermodynamics on the 
governing relations. 

2. Governing relationships of a thermoelastic material with damage. The 
introduction of fields associated with surface phenomena and having a non-thermomechanical 
nature in the classical sense, results in the need to modify the fundamental principle of the 
theory of the governing equations, the principle of macroscopic definability /13/. Using the 
notation 

h(X,z)~(F(X,z),rl(x,z),n:(x,z),V,O(x,t),, z,<t 

I: (x, t) = {e (x, t), TX (x, t), 0 (xv t)- X (x, t)+ 9 (xx 4, qx (x, f)l 

the principle of thermodynamically consistent macroscopic definability 
can be written in the form 

r, (X, t) = z; (J"(X,?), x, t>:% 

where the governing functionals x:z'_, should satisfy the dissipation 

(2.1) 

inequality (1.4) for . 
any prehistories h(r), if the derivatives h' and 18' exist at the time 'C=t. 

Homogeneous non-ageing materials are examined later, in which connection there is no 
explicit dependence of the right-hand sides of (2.1) on X,t and these argumentsareomitted 
everywhere. 

We define a non-linear thermoelastic material being damaged as a medium for which the 
mappings (2.1) reduce to functions of the running values 

x (t) = z+ {h (t)} (2.2) 

for media beingdamaged 

Substituting (2.1) into the inequality (1.4) and using standard reasoning /lo/ associated 
with the construction of a local linear continuation of the process k (r), that is possible 
because of the independence of tberateof change X(z), we obtain the necessaryandsufficient 
conditions for satisfying inequality (1.4) 

‘I’, = p,&/@F, 0 = &/a~, aep (V,O) = 0, 51= se/an (2.3) 

6T > 0, 6Y + 6, = 0 (2.4) 

The first three relationships (2.3) agree with the relationships of classical non-linear 
thermoelasticity /lo/. The last formula of (2.31, justifying to some extent the terminology 
"fracture entropy" for the tensor II, enables us to give a graphical interpretation to the 
fracture dissipation 8, for rt = 0. Indeed, in this case 6, = (BelalI) : II’ +,e;, i.e., the 
dissipation of continual fracture equals the difference between the rate of absorption energy 
in the formation of the new free surface and the rate of energy dissipation because of the 
damage growth and the formation of new free microcrack edges. 

Later we shall assume that the distributed energy sink et', togehter with the sources rf, 
equal zero if K = 0. Since 

in such processes, then by virtue of the independence of F',q', and Yx' the derivatives a6q 
aF, +/all, aefiavx equal zero identically so that 

8, = ef (n), q* =G:II-, G ~ag,fII}/i%I (2.5) 

The quantity G plays the part of the tensor of material resistance of fracture. 
To satisfy the condition rt = 0 for n-0, it is suffficient that 

r, = G, : Ii (2.6) 

where G, is an arbitrary given tensor of the second rank governing the densityoftheexternal 
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fracture sources. 
Since we have 61 = 0 for II' = 0 when taking account of (2.5) and (2.6), then there 

follows from the second relationship of (2.4) and the fact that bDI is independent of II' 
15~ = 0,8, = 0 for all II'. This means that the thermoelastic, damageable material is perfect 
both in the thermomechanics sense as well as in the fracture energy sense. The relationship 
61cr = 0 shows that any process proceeds without internal dissipation so that the rate of 
change of the internal energy for fixed strain and damage is exactly equal to the thermal in- 
flux &. The equality 61 = 0 means that the rate of absorption of the energy expended in 
changing E, equals the rate of energy supply because of the distributed fracture sources rf 
and the elastic energy release during damage growth. 

The relationship 6~ = 0 results in the equation 

pxn' - IIif (F1qx)= pxQFrT + 6,) 

which is the law of conservation (of the change) of entropy in domains of the smooth solutions. 
Taking (2.6) into account, relationship 6, = 0 yields 

(ae/aII + G - G,) : II* = 0 (2.7) 

Hence, by virtue of the arbitrariness of G, it follows that two processes are possible: 
a passive one in which II'=O, i.e., the damage is invariant, and an active one in which 

ae(F, q,lI)/c%T+ G (II)- G,(t)=O, II’# 0 (2.3) 

Eq.tZ.8) determines the relation between the damage entropy II and the running value of 
the strain F, the entropy T), and the tensor G, of the distributed fracture sources. Dif- 
ferentiating (2.8) with respect to time, we find the relation between n and the velocities 

F', rl'r and G,': 

(- a*e +~):n.=~;--(~:F-+~~l.j 
anan 

Furthermore, we will consider materials in which microdefect healing processes can be 
neglected. The surface energy density stands out as a natural characteristic of the degree 
of material fracturability (the norms of the damage entropy tensor). Then the active loading 
condition is 

et' = G:IY>O (2.10) 
Together with (2.8) condition (2.10) imposes a constraint on the state (F,q,II) and 

the rates of change (F’,q’, G,‘) for which the active process is realized. 
The possibility of passive continuation (II' = 0) of the process from any running state 

IF (0, rl (t), I-I (0) that is evident from (2.7), means that it is possible to introduce a 
material element configuration with the very same damage n (t) and entropy r)(t) but dif- 
ferent strain F*(t)_ To isolate the specific properties of this element configuration we will 
assume its unloaded configuration in which 

'I', (F*(t), q(t), n(t)) =O (2.11) 

Let x* denote the configuration of a body comprised of unloaded elements. Then the 
mapping X-+X of the initial into the current configuration can be represented in the form 
of a sequence of two non-degenerate mappings x-x* ,x*-+x with the gradients F* and E 
so that we have the composition 

F = EF*, det E # 0, det F* # 0 (2.12) 

Under the assumption that (2.11) is solvable uniquely for II, the tensor F* can be con- 
sidered tobea macroscopic measure of the damage. Understandably this characteristic is not 
unique to the extent that it is possible to introduce other configurations with the very same 
damage II(t) but different entropy equal to qx = rl (O), say, another state of stress T, (F*, 
rl, n) #O etc. However, all these measures are equivalent from the viewpoint of the 
representation of the damage by the strain function. Consequently, we shall henceforth 
identify II and F*. 

Unlike x and X,the intermediate configuration x* does not belong to Euclidean space 
in the general case, i.e., there is no compatibility equation of the type (l.l), for F*. The 
concept of a tangential configuration x'(X), that Is a configuration of a homogeneously 
strained body with strains equal to the strains at the material point X/19/, is important 
for the sequel. This configuration, consisting of identically strained elements (mutually 
superimposed oblique parallelepipeds) understandably belongs to Euclidean space. 

Using the tensor IIan FL and taking account of (2.3)-(2.5), the governing relationships 
(2.2) can be written in the form 

e=ex (F, q, F*), T,=Tp(F, q, F*) (2.13) 

0 = Qx (F, qt F*), qx = qxx (F, rl, FL, vx) 
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et= et”(F*), @(F, q, F*)=O 

where the equation @ = 0 is the relation between F,q,F* under active loading. Relation- 
ships (2.13) should satisfy the following invariance requirements. 

lo. The principle of material independence from the selection of the reference system 

/lo/; 
2O. The condition of invariance relative to orthogonal transformations of any tangential 

configuration x*(X)/19/; 
3O. The condition of invariance relative to transformations of the initial configuration 

x belonging to the material symmetry group. 
We will confine ourselves to the case of initially isotropic media. As in the theory of 

simple media /lo/, this means that for a body fabricated from the material under consideration 
thereis an undistorted or natural configuration x0, a symmetry group g, which includes the 
complete orthogonal group o, i.e., ec g,. Hence, taking account of the maximality of the 
group 0 /20/, it follows that two and only two cases are possible: 

gx, = e (2.14) 

g, = u, vx (2.15) 

where u is a unimodular group of any transformations that do not change volume. 
If the symmetry,groups (2.14) and (2.15) result in definitions of a solid and a fluid 

in the theory of simple media, then in the case under consideration both groups are inherent 
to a solid. This is due to the undamped memory intrinsic to the governing relations (2.13). 

A non-linear isotropic thermoelastic damageable material with the symmetry group (2.15) 
is a material with a scalar damage characteristic. Reasoning in the same way as /19/, we 
obtain that the following form of the governing relationships (2.13) 

e = E" (e, n, o), T = T” (e, 11, o) = p (I - 2e) ae’jae, 0 = 8” (e, 11, o)= (2.16) 

ae”/bW, q = q” (e, 9,w W, et = 8: (o), 
u=c0O(e, vj) for 0’ > 0 

(e = 1/a (I - c$F-~TF-~)) 

is the necessary and sufficient conditionforsatisfying the invariance principles 10-3' and 
the dissipation inequality (1.4), where &','F', 6", qO,Efo,wo are isotropic functions of their 
arguments. The following notation is used in (2.16): T is a symmetric Cauchy stress tensor, 
q is a heat flux vector in the variables x,and e is an elastic strain tensor analogous in 
its structure to the Almansi tensor and constructed by using the gradient E = FII-’ of the 
mapping x*-+x. It is taken into account here that the symmetric part of the polarexpansion 
II is the strain due to damage that equals 01, as= det II. 

The other possible symmetry group (2.14) characterizes a material that is not sensitive 
to orthogonal strains of the undistorted initial configuration. In this case the governing 
relationships are rather more complex compared with (2.16) 

e=e,(U,q,o), T=p$%FT, 6=+, 

q=Rq,(U,y,o,vxe), et=f+ow 
o=o,(U,9) for 6’ = G : o’ > 0 

(2.17) 

where e,, go, qo, 00 are isotropic functions. The following notation is used in (2.17): R is 
an orthogonal, and U is a syrmnetric positive-definite tensor of the polar expansion F = RU, 
and o is a symmetric positive-definite tensor from the polar expansion II = Rm,G ~&,,(o)/&c~. 

3. Example. To illustrate the possibilities of the approach utilized, we examine the 
simplest case. We will assume that the dependence of the material propertiesonthetemperature 
can be neglected together with the heat flux and the distributed heat sources; the strains 
are small; the material damage is characterized by a scalar quantity. In addition we assume 
that G, = 0, G= 8splde = const. 

Let ~1 be the small strain tensor e'=8-V,I(I:e) the deviator of the strain tensor, 
I1 = I : 8, I = (8’ : ey’. We take the potential of an initially isotropic elastic damageable 
medium in the form 

(3.1) 

A non-linear expression for the stress tensor follows from (3.1) 

T = (KI, - a,o)I + (2~ - a,dl)s’ (3.2) 
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The condition d$do+ G= 0 results for o'> 0 in the expression for the damage parameter 

in an active process 
0 = 8-1 (apI, $ a,J - v) (3.3) 

It is seen from (3.2) that when there is no damage (o= 0), the coefficients K and p 
are the volume modulus and shear modulus of the material. 

In the one-dimensional strain case when eIl= e, while the remaining strain components 

equal zero, it follows from (3.2) and (3.3) that 

1 

(A +W) e 

T11 = (h + 2p - Ba+") E +uo+ 

(k$- 2P - BaB)E+uo- 

1 

0, ~0-6 8 B eO+ 
0= a+(~ - a~+), a >eo+> 0, e'> 0 

a_@-- eo), e<eo-<O, e‘< 0 

a * = p-l (up & a,1/2/s), eO* = $a* 

h = K - 2$3, o,* = @a*ae,* 

A graph illustrating the dependence mentioned is shown in Fig.1. In the domain boundary 

by a,+ under tension and e,- under compression, the material behaves as a linearly elastic 

body with Lam& coefficients h and p. Outside this domain the dependence on the strain is also 

linear for ee'> 0 but with the tangential moduli A+ 2~- Ba*:a (the plus sign corresponds 

to tension and the minus to compression). If the rate of strain at the point e,* changes sign, 

a passive unloading process starts in which the damage is invariant and equal to 0 = a*(e,* - 

a$,* The tangential moduli during the unloading exactly equal the elastic moduli of the un- 

damaged material. 

Fig.1 Fig.2 

In the case of pure hydrostatics when s=i/31,1, we have 

where I,0 = viap. Therefore, hydrostatic compression cannot cause fracture of the material 

being considered. 

Under shear, when e,,= epL= e, while all the remaining strain tensor components equal 
zero, fracture starts for a= e,=v/(a,~% and the stress TX,= &so. The symmetric dependence 
relative to the origin T,, (%a) is represented in Cg.2. In an active loading process (E>E,, 

e' > 0) 
CII = i3-'cz8 l/z (e - so), T,, = -_B-1apa6 fn (e - e,), T,, = (2~ - 

~-'a& f fl-kQeO 

i.e., the simple shear strain of the material under consideration is accompanied by the 

appearance of normal stresses. 

Similarly, shear of the material by a tangential stress results in the appearance of 
dilatancy effects accompanying the fracture process. 

Therefore, the model under consideration for an elastic damageable medium describes a 

number of qualitative effects typical for mountain rocks /ll/: the presence of threshold 
stresses for which fracture starts, the absence of irreversible strains for purely hydrostatic 

compression, the difference between shear fracture and separation fracture that is character- 
ized by the coefficients a, and up, the material dilatancy, and the elastic nature of the 
unloading. 
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